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SUMMARY

A class of higher order compact (HOC) schemes has been developed with weighted time discretization
for the two-dimensional unsteady convection–di�usion equation with variable convection coe�cients.
The schemes are second or lower order accurate in time depending on the choice of the weighted
average parameter � and fourth order accurate in space. For 0:56�61, the schemes are unconditionally
stable. Unlike usual HOC schemes, these schemes are capable of using a grid aspect ratio other than
unity. They e�ciently capture both transient and steady solutions of linear and nonlinear convection–
di�usion equations with Dirichlet as well as Neumann boundary condition. They are applied to one linear
convection–di�usion problem and three �ows of varying complexities governed by the two-dimensional
incompressible Navier–Stokes equations. Results obtained are in excellent agreement with analytical
and established numerical results. Overall the schemes are found to be robust, e�cient and accurate.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The unsteady two-dimensional (2-D) convection–di�usion equation for a transport variable �
in some continuous domain with suitable boundary conditions can be written as

a
@�
@t

−∇2�+ c(x; y; t)
@�
@x
+ d(x; y; t)

@�
@y
= g(x; y; t) (1)

where a is a constant, c and d are the convection coe�cients, and g is a forcing function. In
Equation (1), the magnitude of the convection coe�cients determines the ratio of convection to
di�usion and is sometimes referred to as the Reynolds number (Re). The equation becomes
convection dominated for large Re’s and di�usion dominated for small Re’s. Most of the
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unsteady 2-D �ows are expressed in this form. It represents the convection–di�usion of many
�uid variables such as mass, heat, energy, vorticity etc. With proper choice of a; c; d and
g, it can also be used to represent the complete Navier–Stokes (N–S) equations.
Till about two decades ago, second order accuracy was considered to be su�cient for most

CFD applications. In particular, the central di�erence and upwind schemes have been the
most popular ones because of their straightforwardness in application. Though for problems
having well-behaved solutions, they often yield quite good results on reasonable meshes, the
solution may be of poor quality for convection dominated �ows if the mesh is not su�ciently
re�ned. Again, higher order discretization is generally associated with non-compact stencils
which increase the band-width of the resultant coe�cient matrix. Both mesh re�nement and
increased matrix band-width invariably lead to a large number of arithmetic operations. Thus,
neither a lower order accurate method on a �ne mesh nor a higher order accurate one on a non-
compact stencil seems to be computationally cost-e�ective. This is where higher order compact
(HOC) �nite di�erence methods become important. A compact �nite di�erence scheme is one
which utilizes grid points located only directly adjacent to the node about which di�erences
are taken. In addition, if the scheme has an accuracy greater than two, it is termed an HOC
method. The higher order accuracy of the HOC methods combined with the compactness of the
di�erence stencils yields highly accurate numerical solutions on relatively coarser grids with
greater computational e�ciency. Such methods can be obtained through di�erent mechanisms.
One of them is to use the original di�erential equation to replace the derivatives appearing
in the leading truncation error (TE) terms of the standard central di�erence approximation.
This idea was �rst attempted by Lax and Wendro� [1–3] on the unsteady hyperbolic partial
di�erential equations (PDEs). They used the original PDE to replace the second order time
derivative in a Taylor series expansion, thus raising the time accuracy of the scheme from
order one to two. The spatial implementation of this temporal Lax–Wedro� idea was �rst
proposed by Mackinnon and Carey [4]. Similar research was carried out by Mackinnon and
Johnson [5] in order to develop schemes for steady-state convection–di�usion equations. Spotz
and Carey [6] then extended this O(h4) scheme (h is the grid spacing) to the steady-state
stream-function vorticity ( −!) formulation of the N–S equations.
There have been attempts to develop HOC schemes for transient problems as well. Several

explicit or partially implicit higher order schemes were developed for the unsteady incompress-
ible N–S equations by Hirsh [7] and Rai and Moin [8], and for compressible N–S equations by
Lele [9]. Abarbanel and Kumar [10], at about the same time, proposed some explicit schemes
based on the HOC approach for the Euler equations. These schemes are spatially fourth and
temporally second order accurate. Recently a second order time accurate explicit scheme for
2-D advection dominated �ows has been presented by Balzano [11]. Explicit schemes, though
very easy to implement, have a severe stability limit to the time step [1–3].
On the other hand, implicit schemes can be applied to obtain a time-accurate solution

of an inherently unsteady �ow or time marching steady-state solution with a larger time
step. Several higher order implicit schemes for the one dimensional (1-D) time dependent
convection–di�usion problems were developed by Noye and Tan [12]. Later on, they also
developed a nine-point scheme of third order spatial and second order temporal accuracy for
the 2-D convection–di�usion equations with constant coe�cients [13]. The 2-D fourth order
accurate nine-point HOC scheme proposed in Reference [6] was extended by Spotz to solve
the unsteady 1-D convection–di�usion and 2-D di�usion equations [14]. Few other schemes
that have been developed for the unsteady 2-D N–S equations are the implicit higher order
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accurate schemes of Strikwerda [15], the upwind compact scheme of Yanwen et al. [16]
and the implicit weighted essentially non-oscillatory scheme of Chen et al. [17]. Some of
these schemes (for example, Reference [15]), however, could not adequately capture the high
Reynolds number regime of incompressible viscous �ows.
The present work proposes a class of implicit HOC schemes for the 2-D unsteady convec-

tion–di�usion in line with the steady-state scheme of Reference [5]. In the process it also
removes, for the �rst time, the restriction of usual HOC schemes [5; 6] of having to use a
grid aspect ratio of unity. The schemes accommodate Dirichlet as well as Neumann boundary
condition easily. They solve very accurately and e�ciently the unsteady 2-D convection–
di�usion problems including 2-D incompressible N–S equations. One important factor is that
determines the merit of a scheme for transient problems is the time-wise accuracy [2; 18] and
one of the proposed schemes is temporally second and spatially fourth order accurate. To test
the robustness, accuracy and e�ciency of the schemes, they are applied to four pertinent test
cases for which numerical and=or analytical results are available. The �rst one serves as a
perfect example to illustrate inherent features of the schemes like di�usion and anti-di�usion
and their suppression. It is evident from the next two test cases that the proposed schemes
accurately capture the transient �ow of problems governed by the 2-D incompressible N–S
equations even for a Reynolds number as high as 10 000. Also being implicit in nature, they
capture the steady-state time marching solutions very e�ciently as can be seen from the last
case. Grid independence studies and error analysis have been carried out wherever necessary.
Comparison with analytical and established numerical results shows excellent agreement.
The paper has been arranged in �ve sections. Section 2 deals with discretization and issues

related to it, Section 3 with stability analysis, Section 4 with the numerical test cases and
�nally, Section 5 summarizes the whole work.

2. DISCRETIZATION AND RELATED ISSUES

At the outset of this section, we brie�y discuss the development of HOC formulation for the
steady-state form of Equation (1), which is obtained when �; c; d and g are independent of
t. Under these conditions, Equation (1) becomes

−∇2�+ c(x; y)
@�
@x
+ d(x; y)

@�
@y
= g(x; y) (2)

Assuming the problem domain to be rectangular and constructing on it a uniform rectangular
mesh of steps h and k in the x- and y-directions respectively, the standard central di�erence
approximation to Equation (2) at the (i; j)th node is given by

−�2x �ij − �2y �ij + c�x�ij + d�y�ij − �ij = gij (3)

where �ij denotes �(xi; yj); �x; �2x and �y; �2y are the �rst and second order central di�erence
operators along x- and y-directions respectively. The truncation error �ij is given by

�ij =
[
h2

12

(
2c

@3�
@x3

− @4�
@x4

)
+

k 2

12

(
2d

@3�
@y3

− @4�
@y4

)]
ij
+O(h4; k 4) (4)
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To obtain a fourth order compact formulation for Equation (2), each of the derivatives of
the leading term of Equation (4) are compactly approximated [5; 6] to O(h2; k 2). In order to
accomplish this, the original PDE of Equation (2) is treated as an auxiliary relation that can
be di�erentiated to yield expressions for higher derivatives. For example the derivative in the
�rst term on the right hand side of Equation (4) can be written as

@3�
@x3

∣∣∣∣
ij
=

[
− @3�
@x@y2

+ c
@4�
@x2

+
@c
@x

@�
@x
+ d

@2�
@x@y

+
@d
@x

@�
@y

− @g
@x

]
ij

= [−�x�2y + cij�2x + �xcij�x + dij�x�y + �xdij�y]�ij − �xgij

+O(h2; k 2) (5)

Similar approximations can be constructed for the other derivatives as well. For such com-
pact schemes, [(@n�)=(@xn)] or [(@n�)=(@yn)] is generally replaced by a combination of terms
involving products of [(@p+q�)=(@xp@yq)] and the convection coe�cients or their derivatives
with p + q6n. For a fourth order accurate scheme, n64 and compactness is maintained
keeping p; q62. Thus replacing the derivatives in Equation (4) with approximations such as
Equation (5) and subsequent substitution for �ij in Equation (3) yields the O(h4; k 4) approx-
imation for Equation (2) on a nine-point stencil as

−�ij�2x �ij − �ij�2y �ij + Cij�x�ij +Dij�y�ij

− h2 + k 2

12
[�2x �

2
y − cij�x�2y − dij�2x �y − �ij�x�y]�ij =Gij (6)

where the coe�cients �ij ; �ij ; �ij ; Cij ; Dij and Gij are as follows:

�ij =1+
h2

12
(c2ij − 2�xcij) (7)

�ij =1+
k 2

12
(d2ij − 2�ydij) (8)

�ij =
2

h2 + k 2
(h2�xdij + k 2�ycij)− cijdij (9)

Cij =
[
1 +

h2

12
(�2x − cij�x) +

k 2

12
(�2y − dij�y)

]
cij (10)

Dij =
[
1 +

h2

12
(�2x − cij�x) +

k 2

12
(�2y − dij�y)

]
dij (11)

Gij =
[
1 +

h2

12
(�2x − cij�x) +

k 2

12
(�2y − dij�y)

]
gij (12)
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Here, it is assumed that the convection coe�cients c; d and the forcing function g are su�-
ciently smooth so that they are at least twice di�erentiable, and either the analytical expressions
or discrete approximations of them together with their derivatives are known a priori.
For an unsteady case, the equation with variable coe�cients will be similar to Equation

(2), but the coe�cients c and d are functions of x; y and t, and the expression on the right
hand side becomes g(x; y; t) − a[(@�)=(@t)]. Using forward di�erence for [(@�)=(@t)] with a
time step �t, we approximate the unsteady equation with the help of Equation (6) as

a


1 +

︷ ︸︸ ︷
h2

12
(�2x − cij�x) +

k 2

12
(�2y − dij�y)


�+t �n

ij

− �ij�2x �
n
ij − �ij�2y �

n
ij + Cij�x�n

ij +Dij�y�n
ij

− h2 + k 2

12
[�2x �

2
y − cij�x�2y − dij�2x �y − �ij�x�y]�n

ij =Gn
ij (13)

where �+ denotes the forward di�erence operator and the superscript n stands for the time
level. Equation (13) can be rewritten as

1∑
k1 =−1

1∑
k2 =−1

wi+k1 ; j+k2�
n+1
i+k1 ; j+k2 =

1∑
k1 =−1

1∑
k2 =−1

w′
i+k1 ; j+k2�

n
i+k1 ; j+k2 + 12Gij (14)

where wi+k1 ; j+k2 = qi+k1 ; j+k2 ; w′
i+k1 ; j+k2 = 12pi+k1 ; j+k2 + qi+k1 ; j+k2 , with �1 = (�t=h2), �2 = [(�t)=

(k 2)] and

pi−1; j−1 =
�1 + �2
2

(
−1
6
− cijh
12

− dijk
12

+
�ijhk
24

)
; qi−1; j−1 = 0

pi; j−1 =−�2�ij − �2Dijk
2

+
�1 + �2
6

+
dijk(�1 + �2)

12
; qi; j−1 = a

(
1 +

dijk
2

)

pi+1; j−1 =
�1 + �2
2

(
−1
6
+

cijh
12

− dijk
12

− �ijhk
24

)
; qi+1; j−1 = 0

pi−1; j =−�1�ij − �1Cijh
2

+
�1 + �2
6

+
cijh(�1 + �2)

12
; qi−1; j= a

(
1 +

cijh
2

)

pij =2�1�ij + 2�2�ij − �1 + �2
3

; qij =8a

pi+1; j =−�1�ij +
�1Cijh
2

+
�1 + �2
6

− cijh(�1 + �2)
12

; qi+1; j= a
(
1− cijh

2

)

pi−1; j+1 =
�1 + �2
2

(
−1
6
− cijh
12

+
dijk
12

− �ijhk
24

)
; qi−1; j+1 =0
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pi; j+1 =−�2�ij +
�2Dijk
2

+
�1 + �2
6

− dijk(�1 + �2)
12

; qi; j+1 = a
(
1− dijk

2

)

pi+1; j+1 =
�1 + �2
2

(
−1
6
+

cijh
12

+
dijk
12

+
�ijhk
24

)
; qi+1; j+1 =0

A weighted average parameter � is now introduced through the use of the forward time
approximation of [(@�)=(@t)] such that t�=(1 − �)t n + �tn+1 for 06�61. Varying � pro-
vides a class of integrators; for example, forward Euler for �=0, backward Euler for �=1
and Crank–Nicholson for �=0:5. Consequently, the coe�cients wi+k1 ; j+k2 and w′

i+k1 ; j+k2 in
Equation (14) can be written as wi+k1 ; j+k2 = 12�pi+k1 ; j+k2 + qi+k1 ; j+k2 and w′

i+k1 ; j+k2 = 12(� −
1)pi+k1 ; j+k2 + qi+k1 ; j+k2 respectively, and Gn

ij on the right hand side of Equation (14) takes the
form �Gn+1

ij + (1 − �)Gn
ij . With these replacements, Equation (14) becomes the HOC �nite-

di�erence approximation for the unsteady 2-D convection–di�usion equation with fourth order
spatial accuracy. All the schemes arising in this way are implicit because of the operator un-
der the brace in Equation (13). The accuracy of the schemes is O((�t)s; h4; k 4), with s62.
Again, it should be noted that for �=0, the di�erence stencil requires nine points in the nth
and �ve points in the (n + 1)th time level resulting in what may be called a (9,5) scheme.
Similarly, a (9,9) and a (5,9) scheme are obtained for �=0:5 and �=1 respectively. The
HOC stencils emerging in this way have been illustrated in Figure 1.
The system of Equation (14) can be written in the matrix form as

A�n+1= f(�n) (15)

where the coe�cient matrix A is an asymmetric sparse matrix. For a grid of size m× n; A
has a dimension mn, and �n+1 and f(�n) are mn-component vectors. Partitioning A, �n+1

and f(�n) into sub-matrices corresponding to the interior and boundaries, Equation (15) can
be written as




AL 0 0 0 0

0 AB 0 0 0

0 0 AD 0 0

0 0 0 AT 0

0 0 0 0 AR







�n+1
L

�n+1
B

�n+1
D

�n+1
T

�n+1
R



=




f(�n
L)

f(�n
B)

f(�n
D)

f(�n
T)

f(�n
R)




where L, R, B and T stand respectively for the left, right, bottom and top boundaries of the
domain and D for the interior. The block square matrices AB and AT are of order m, AL and
AR are of order (n − 2), and AD is of order (m − 2)(n − 2). If boundary conditions are of
Dirichlet type or they result in explicit expressions for the transport variables, the sub-matrices
representing the boundary conditions are identity matrices. For an implicit expression, they
will be sparse matrices with the number of non-zero entries in a particular row depending
upon the order of the scheme. The matrix AD has at most nine non-zero entries in each row.
In matrix A, 0’s are rectangular null matrices of orders ranging from m× (n − 2) to
m× (m − 2)(n − 2). The details of the elements of the column vectors on the left hand side
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Figure 1. Unsteady HOC stencils for (a) �=0, (b) �=0:5 and (c) �=1:0.

are as follows:

�L = [�1;2; : : : ; �1; n−1]�; �B=[�1;1; : : : ; �m;1]�

�T = [�1; n; : : : ; �m;n]�; �R=[�m;2; : : : ; �m;n−1]�

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1111–1131
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and

�D=[�2;2; : : : ; �m−1;2; �2;3; : : : ; �m−1;3; : : : ; �2; n−1; : : : ; �m−1; n−1]�

On the right hand side, the (n−2)-component vectors f(�n
L) and f(�

n
R), and the m-component

vectors f(�n
B) and f(�

n
T) correspond to the boundaries and the entries of the (m− 2)(n− 2)-

component vector f(�n
D) are given at the right hand side of Equation (14). Thus f(�

n)
being known in terms of the current transport variables, Equation (15) can be solved with
an iterative method for the transport variables in the next time level. The coe�cient matrix
arising from the present HOC discretization is not diagonally dominant and conventional
iterative methods such as Gauss–Seidel cannot be used. Hence to solve the system of Equation
(15), conjugate gradient method (CG) [19] for pure di�usion (when c=d=0) and a hybrid
biconjugate gradient stabilized method (BiCGStab) [20] for convection–di�usion have been
employed without any pre-conditioning. For a problem having Dirichlet or explicitly expressed
boundary conditions, A will have at most 2× (m+n−2)+9× (m−2)(n−2) non-zero entries.
Consequently, the matrix-vector product A�n+1 required by the iterative solvers involves 2×
(m+ n− 2) + 81× (m− 2)(n− 2) arithmetic operations only.

3. STABILITY ANALYSIS

A von Neumann linear stability analysis of the schemes is now performed assuming the
convective coe�cients c and d to be constants and forcing function g in Equation (1) to be
zero for a particular HOC stencil with the (i; j)th node at the centre. If �n

ij = bneI	xieI	yj, where
I =

√−1; bn is the amplitude at time level n, and 	x(=2
h=�1) and 	y(=2
k=�2) are phase
angles with wavelengths �1 and �2 respectively, the ampli�cation factor �(= [(bn+1)=(bn)]),
for stability, has to satisfy the relation

|�|2 − 160
Now � can be found by substituting the expression for �n

ij and �n+1
ij in Equation (14) and

the stability criterion of the schemes becomes

(1− 2�)6 2a
�1(8 + h2c2) + �2(8 + k 2d2)

(16)

Introducing Courant numbers Cx= c�t=ah; Cy=d�t=ak and cell Reynolds numbers Reh= ch,
Rek =dk, we obtain

(1− 2�)[CxRe−1h (8 + Re2h) + CyRe−1k (8 + Re2k )]62 (17)

In particular, if Reh=Rek =Rec and Cx=Cy=C, then

C(1− 2�)6 Rec
8 + Re2c

(18)

It is seen that a scheme is conditionally stable for 06�¡ 0:5. The region of stability for this
particular case represented by Equation (18) together with that of other schemes, viz. upwind,
FTCS, and (9,9) scheme of Reference [13] are shown in Figure 2. Here, a scheme is stable in
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Figure 2. The regions of von Neumann stability for di�erent schemes.

the region below its curve. Though the conditional stability criterion is restrictive particularly
for large Rec, for 0:56�61, the scheme is unconditionally stable for all values of Rec.

4. NUMERICAL TEST CASES

In order to study the validity and e�ectiveness of the proposed schemes, they are applied to one
steady and three unsteady 2-D test problems. The unsteady problems are (i) the convection–
di�usion of a Gaussian pulse, (ii) the �ow decayed by viscosity and (iii) the Taylor’s vortex
problem, whereas the steady one is (iv) the lid-driven cavity �ow. As the �rst three problems
have analytical solutions, Dirichlet boundary conditions are used for them, whereas for the
other one, both Dirichlet and Neumann boundary conditions are applied. All the computations
are carried out on a HP 9000=C 200 computer.

4.1. Problem 1

Consider Equation (1) with g=0 and constant convective coe�cients in the square 06x; y62
with initial condition given, as in Reference [14], by

�(x; y; 0)= exp[−a((x − 0:5)2 + (y − 0:5)2)] (19)

An analytical solution to this problem is

�(x; y; t)=
1

4t + 1
exp

[
− a
4t + 1

((x − ct − 0:5)2 + (y − dt − 0:5)2)
]

(20)

The initial condition is a Gaussian pulse centred at (0:5; 0:5) with pulse height 1. The boundary
conditions have been taken from the analytical solution given by Equation (20). For the sake
of comparison of our results with those of Reference [13], we choose a=100 and c=d=80.
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Figure 3. The initial and the numerical pulse at t=1:25 [(9; 9);�t=0:00625].

The initial pulse and the pulse at t=1:25 found through the present (9,9) scheme are shown
in Figure 3. A remarkably similar picture is obtained from the analytical solution (Figure 4)
where at t=1:25 the Gaussian pulse moves to a position centred at (1:5; 1:5) with a pulse
height of 1=6.
The average and the maximum absolute errors of di�erent schemes including the present

ones along with their CPU times have been presented in Table I. Using the modi�ed equivalent
partial di�erential equation (MEPDE) approach [13], it is found that if the time step is not
small enough, the present (9; 5) and (5; 9) schemes are not adequate to capture the original
pulse. This fact is also re�ected in Figures 5(a) and 6(a). Table II depicts, at t=1:25, the pulse
height for di�erent schemes and time steps. At the same instant, the location of the centre of
the pulse is (1:5; 1:5), the same as that of the exact pulse, for all computations in Table II. As
seen from the same table, and Figures 5(a) and 7(a), the �rst order time accurate (9,5) scheme
shows a pulse height higher than the exact because of the presence of in-built numerical anti-
di�usion. To be precise, as seen from Figure 5(a), the anti-di�usion is prominent along the
diagonal parallel to y= x, whereas little change in di�usion is noticed along the diagonal
parallel to y= − x. This asymmetry in di�usivity produces elliptic contours. On the other
hand, the in-built numerical di�usion in the (5,9) scheme explains the lower pulse height seen
from Table II, and Figures 6(a) and 7(a). From Figure 6(a), it is clear that there is additive
numerical di�usion along y= x, whereas di�usion along y=−x remains largely una�ected.
Table II shows that the magnitudes of numerical di�usivity and anti-di�usivity decrease with
the reduction in time step and with smaller values, highly accurate solutions can be obtained.
This is illustrated by the computed contours of Figures 5(b) and 6(b), and the exact contours
of Figure 7(a). The (9,9) scheme gives a remarkably accurate solution even with a relatively
larger time step �t=0:00625, yielding a pulse which is almost indistinguishable from the
exact one as seen from Table II and Figures 4 and 7. It will be worthwhile to compare the
time-wise e�ciency of the present (9,9) scheme with the (9,9) scheme of Noye and Tan [13]
as both the schemes are implicit and second order accurate in time. The CPU time ratio of
the latter scheme to FTCS scheme is approximately 447 (30851:69) [13] whereas the same
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Figure 4. Surface plots of (a) exact and (b) numerical [(9; 9);�t=0:00625] pulse
in the subregion 16x; y62 at t=1:25.

Table I. Error and CPU time for Problem 1 at t=1:25 with �t=0:0125 and h= k =0:025.

Method Average|error| Maximum|error| CPU time (s)

FTCS 3:94× 10−3 1:21× 10−1 1.67
Upwind 2:65× 10−3 6:63× 10−2 3.34
Noye and Tan 1:43× 10−5 4:84× 10−4 —
Present (9,5) 1:49× 10−3 3:74× 10−2 16.34
Present (5,9) 1:02× 10−3 2:25× 10−2 11.74
Present (9,9) 1:59× 10−5 4:48× 10−4 8.78
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Figure 5. Contour plots of the pulse in the subregion 16x; y62 at t=1:25 for (9,5)
scheme with (a) �t=0:00625 and (b) �t=0:0001.

Figure 6. Contour plots of the pulse in the subregion 16x; y62 at t=1:25 for (5,9)
scheme with (a) �t=0:00625 and (b) �t=0:0001.

for the present (9,9) scheme to FTCS is 5.257 (Table I). This clearly shows the superior
time-wise e�ciency of the present scheme.
In the next three examples, the results obtained only through the (9,9) scheme are presented,

although su�ciently accurate results are obtained using the other two schemes as well.

4.2. Problem 2

The problem of �ow decayed by viscosity [15; 16; 21] is governed by the 2-D N–S equations,
which in non-dimensional form for an incompressible �ow can be written as

@u
@x
+

@v
@y
=0 (21)
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Table II. The pulse height at t=1:25 with di�erent time steps.

Method �t Pulse height

0.00625 0.202492
(9,5) 0.00025 0.167553

0.0001 0.166852
0.00625 0.144447

(5,9) 0.0001 0.165983
0.00005 0.166210
0.0125 0.166863

(9,9) 0.00625 0.166540
0.0001 0.166656

Analytical 0.166667

Figure 7. Contour plots of the pulse in the subregion 16x; y62 at t=1:25, (a) exact and
(b) (9,9) scheme with �t=0:00625.

@u
@t
+ u

@u
@x
+ v

@u
@y
=−@p

@x
+
1
Re

∇2u (22)

@v
@t
+ u

@v
@x
+ v

@v
@y
=−@p

@y
+
1
Re

∇2v (23)

in the square 06x; y6
. Here u and v are the velocities in the directions x and y, Re is
the Reynolds number and, p is the pressure. The initial conditions are

u(x; y; 0)=− cos x sin y and v(x; y; 0)= sin x cosy (24)

and boundary conditions at x=0, x=
, y=0 and y=
 are given by the following relations

u=− cos x sin y e−2t=Re and v= sin x cosy e−2t=Re (25)
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Table III. Numerical and exact values of u and v at (
=4; 
=10) at di�erent time levels, Re and
grid sizes with �t=0:01 (Problem 2).

u v

Grid Exact Grid Exact
21× 21 41× 41 21× 21 41× 41

Re=50
t=0:1 −0:217643 −0:217636 −0:217636 0:669812 0:669814 0:669814
t=0:5 −0:214222 −0:214184 −0:214181 0:659179 0:659182 0:659182
t=1:0 −0:210011 −0:209945 −0:209940 0:646122 0:646129 0:646129

Re=100
t=0:1 −0:218086 −0:218072 −0:218071 0:671153 0:671155 0:671155
t=0:5 −0:216417 −0:216339 −0:216334 0:665802 0:665807 0:665807
t=1:0 −0:214328 −0:214191 −0:214181 0:659168 0:659181 0:659182

Re=1000
t=0:1 −0:218523 −0:218473 −0:218464 0:672376 0:672364 0:672364
t=1:0 −0:218684 −0:218155 −0:218071 0:671153 0:671154 0:671155
t=5:0 −0:216842 −0:216435 −0:216334 0:665801 0:665807 0:665807

Re=10 000
t=0:1 −0:218544 −0:218523 −0:218506 0:672511 0:672490 0:672485
t=1:0 −0:219246 −0:218652 −0:218464 0:672383 0:672368 0:672364
t=5:0 −0:218786 −0:218428 −0:218290 0:671832 0:671827 0:671826

The analytical solution to this problem is

u=− cos x sin y e−2t=Re; v= sin x cosy e−2t=Re and p=−1
4
(cos 2x + sin 2y) e−4t=Re (26)

Introducing stream-function  and vorticity !, Equations (21)–(23) can be rewritten as

@!
@t
+ u

@!
@x
+ v

@!
@y
=
1
Re

∇2! (27)

∇2 =−! (28)

where the initial and boundary conditions for  and ! can be derived from Equations (24)
and (25). The pressure when needed, is obtained by solving the pressure Poisson equation,

∇2p=2
(
@u
@y

@v
@x

− @u
@x

@v
@y

)
(29)

derived from Equations (21)–(23).
Results for di�erent time steps and grid sizes are shown in Table III; it shows the computed

values of u and v for four Reynolds numbers, viz. 50, 100, 1000 and 10 000 at di�erent time
levels at point (
=4; 
=10) together with the exact solutions. Obviously, grid independence is
achieved with a grid as coarse as 21× 21. Figure 8 shows the pressure contours obtained
through the present scheme for Re=100 at time t=0:1 along with the exact contours. It is
seen from these �gures that the exact and numerical contours are almost indistinguishable.
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Figure 8. Pressure contours for Re=100 at t=0:1 for Problem 2, (a) numerical and (b) exact.

Strikwerda [15] mentioned that his higher order scheme is inadequate to provide realistic
pictures of �ows for Reynolds numbers beyond 100. However, present schemes are free from
such limitations and highly accurate results are presented in Table III for a wide range of
Reynolds numbers including a high Re=10000.

4.3. Problem 3

In this example, the Taylor’s vortex problem [16; 17] is considered with the following initial
conditions

u(x; y; 0)=− cos(Nx) sin(Ny) and v(x; y; 0)= sin(Nx) cos(Ny) for 06x; y62
 (30)

The exact solution of this problem is given by

u=− cos(Nx) sin(Ny) e−2N
2t=Re and v= sin(Nx) cos(Ny) e−2N

2t=Re (31)

where N is an integer. Figure 9 depicts the computed Taylor’s vorticity contours for h= k=
[(2
)=(64)], Re=1000 and N =4 at t=2 with �t=0:01. The variations of the horizontal
velocity along the vertical centerline and the vertical velocity along the horizontal centerline
at time t=10 and Re=100 for N =1; 2 and 4, along with the exact solutions are presented in
Figure 10(a) and (b). Variations of the velocities on either sides of the axes exhibit identical
behaviour with equal peak values. It is seen that our results are in good agreement with the
exact solutions. The percentage error [16] of the maximum velocity (either u or v) has been
used to test the accuracy of the schemes. For Re=20 and N =1 at time t=10 on a 65× 65
grid, this error for the (9,9) scheme is found to be 0.0071 per cent, which is much less than
the minimum error 0.038 per cent obtained in Reference [17] with a 129× 129 grid. For
N =1; 2 and 4, the percentage errors of the scheme are 0.054, 0.170 and 0.802 respectively
for Re=1000.
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Figure 9. Vorticity contours for the Taylor’s vortex at t=2 for N =4 and Re=1000 with �t=0:01.

4.4. Problem 4

The problem considered here is the 2-D lid-driven cavity �ow which is extensively used as a
benchmark for code validation of the incompressible N–S equations. The cavity is de�ned by
the square 06x, y61. The governing equations are given by Equations (21)–(23). The top
wall of the cavity at y=1 moving from left to right sets the �uid into motion. The velocities
on that wall are u=1 and v=0, whereas on the other walls are u= v=0. The stream-
function vorticity formulation have again been used here. A fourth order compact scheme for
the Neumann boundary condition for vorticity has been used. For example, on the left wall,
the approximation for ! can be found from the relation v=−[(@ )=(@x)] and Equation (28)
as

−�+x  0j −
[
h
2
+

h2

6
�+x − h3

24
(Rev0j�y − �2y)

]
!0j = v0j − h3

24
(�+x �

2
yv0j − �+t !0j) (32)

where the su�xes 0 and j stand for the left wall and the vertical index respectively. This
results in an explicit expression for ! on the left wall. Vorticities on the other walls can be
found in a similar way and for the corners, a third order scheme [6] has been used.
Computations are carried out using uniform grids of sizes 41× 41, 81× 81 and 121× 121

with a time step �t=0:0125 for Re=100 and 1000. Steady-state results are compared with
those of Ghia et al. [22] and Spotz [23]. Table IV depicts the steady-state values  ; ! and
the location of the primary and the secondary bottom vortices along with their horizontal and
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Figure 10. (a) Horizontal velocity along the vertical centerline and (b) vertical velocity along the
horizontal centerline for the Taylor’s vortex problem at t=10 for N =1; 2 and 4, and Re=100.

Table IV. Steady-state vortex data for the lid-driven cavity
problem for Re=1000 (�t=0:0125).

Vortex Method  ! (x; y) Hl Vl

Present −0:118750 −2:061801 (0:5333; 0:5750) — —
Primary Ghia −0:117929 −2:04968 (0:5313; 0:5625) — —

Spotz −0:117240 −2:053332 (0:5250; 0:5750) — —
Present 0.000226 0.33275 (0:0833; 0:0750) 0.2156 0.1692

Bottom left Ghia 0.000231 0.36175 (0:0859; 0:0781) 0.2188 0.1680
Spotz 0.000174 0.23915 (0:0750; 0:0750) 0.2189 0.1641
Present 0.001747 1.11624 (0:8667; 01167) 0.3023 0.3493

Bottom right Ghia 0.001751 1.15465 (0:8594; 0:1094) 0.3034 0.3536
Spotz 0.001731 1.04409 (0:8750; 0:1250) 0.3067 0.3856

vertical lengths [(Hl) and (Vl)] for Re=1000. Comparisons with the results of Reference
[22] and the best results of Reference [23] show very good agreement. Figure 11(a) and
(b) respectively compare the steady-state values of the horizontal velocity along the vertical
centerline and vertical velocity along the horizontal centerline with the results of Reference
[22]. Agreement in both the cases is excellent. Figures 12 and 13 show the steady-state
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Figure 11. Steady-state results of the lid-driven cavity problem: (a) horizontal velocity along the vertical
centreline and (b) vertical velocity along the horizontal centreline for Re=100 and 1000.

Figure 12. Steady-state stream function contours for the lid-driven cavity problem at
(a) Re=100 and (b) Re=1000.
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Figure 13. Steady-state vorticity contours for the lid-driven cavity problem at
(a) Re=100 and (b) Re=1000.

Figure 14. Steady-state vorticity on the four boundaries of the cavity for Re=1000.

contours of stream-function and vorticity respectively for Re=100 and 1000. It is seen from
the �gures that though the centre of the primary vortex is o�set towards the top right corner for
Re=100, with increasing Re, it moves towards the geometric centre of the cavity (Figure 12).
Also, as Re increases, several regions of high vorticity gradients, indicated by concentration
of the vorticity contours, appear within the cavity (Figure 13). The steady-state vorticity
distribution for Re=1000 on the moving wall obtained by Ghia et al. [22] and on all the
four walls obtained by the present (9,9) scheme are shown in Figure 14. In the case of the
moving wall, there is some oscillation in the vorticity pro�le at the left end, as reported in
Reference [6] for fourth order accurate boundary conditions. In general the solutions obtained
through the present scheme, even on a coarser grid, are in excellent agreement with well-
established results.
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5. CONCLUSION

A class of implicit HOC �nite di�erence schemes has been developed with weighted time
discretization to solve the unsteady 2-D variable coe�cient convection–di�usion equation.
Both Dirichlet and Neumann boundary conditions can easily be incorporated into the schemes.
A linear stability analysis shows that the schemes are unconditionally stable for 0:56�61.
The schemes are second or lower order accurate in time according as �=0:5 or otherwise,
and fourth order accurate in space. In a departure from the rigidity of usual HOC schemes,
the present schemes have been developed for a grid aspect ratio which need not necessarily
be unity. Three schemes viz. (9,5), (9,9) and (5,9) for �=0; 0:5 and 1 respectively have
been investigated. They are easy to implement and the use of conjugate gradient and a hybrid
biconjugate gradient stabilized algorithms for solving the algebraic systems arising at every
time level, makes the implicit procedure computationally e�cient even in capturing transient
solutions. To bring out di�erent aspects of the schemes, they have been employed to compute
the transient solutions of three 2-D linear and nonlinear convection–di�usion problems and the
time marching steady solution of the 2-D lid-driven cavity �ow problem. The robustness of the
schemes is illustrated by their applicability to the wide range of problems of varying physical
complexities represented, among others, by Reynolds numbers ranging from 50 to 10 000.
Computational e�ciency of these schemes is re�ected by the low demand on CPU time.
This is substantiated by a comparison of the CPU time with an implicit scheme of identical
temporal accuracy by Noye and Tan. The results obtained in all the four test cases with coarser
grids are in excellent agreement with the analytical as well as established numerical results,
underlining the high accuracy of the schemes. The implicit nature of the schemes is fully
exploited in arriving at the steady-state results for the lid-driven cavity problem, where time-
steps as high as 0.5 has been employed for some of the computations. Because of being HOC
in space, second order accurate in time and implicit in nature, the (9,9) scheme in particular
seems to have good potential for e�cient application to many problems of incompressible
viscous �ows.
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